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Exercise 8.1 Bohr-van-Leeuwen-Theorem

The partition function of the system (without external magnetic field) is given by

ZB=0 =

∫ (∏
i

d3qi

)(∏
i

d3pi

)
e−βH(p1,...,pN ;q1,...,qN ). (1)

Since the only consequence of an applied magnetic field B is a shift of the momenta
pi 7→ pi − eAi/c with Ai = A(qi), we ca write the partition function for the case B 6= 0
as

ZB 6=0 =

∫ (∏
i

d3qi

)(∏
i

d3pi

)
e−βH(p1−e/cA1,...,pN−e/cAN ;q1,...,qN ). (2)

The integrals over the momenta pi all run from −∞ to ∞ and hence we can shift every
integration variable pi in (2) by an arbitrary constant, pi 7→ pi + eAi/c. Finally, we have

ZB=0 = ZB 6=0, (3)

stating that the partition function of a classical system does not depend on the externally
applied magnetic field. Thus, the magnetization of a classical system vanishes,

M =
1

β

∂ logZ

∂B
= 0. (4)

Note: For a discussion on the diamagnetism of electrons and the problem of boundary
terms, see Surprises in Theoretical Physics, R. Peierls, Princeton University Press (1979).

Exercise 8.2 Landau Diamagnetism

In the lecture it was shown that in in a two-dimensional system of size L×L the number
of states in one Landau level is given by Nn = L2/2πl2 with l (l2 = ~c/|eB|) the Larmor
radius. In a three-dimensional system of size L× L× L = V the number of states in the
n-th Landau level with z-component of the momentum within dpz is given by

Nn
Ldpz
2π~

=
L3

2πl2
dpz
2π~

=
V |eB|

(2π~)2c
dpz =

V m∗ωc
(2π~)2

dpz, (5)

where m∗ is the effective mass of the electrons and the cyclotron frequency ωc is given by
ωc = |eB|/m∗c.
The density of states in the n-th Landau level is now given by

ρn(ε) = 2× 2× m∗ωc
(2π~)2

dpz+(n, ε)

dε
=

(2m∗)3/2ωc
4π2~2

1√
ε− ~ωc(n+ 1/2)

, (6)

where the factors 2 × 2 account for the spin degeneracy and for the positive and the
negative pz values; with

pz+(n, ε) =
√

2m∗
√
ε− ~ωc(n+ 1/2) (7)
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according to the energy of a state is given by ε = p2z/2m
∗ + ~ωc(n+ 1/2).

We now want to calculate the free energy which, for non-interacting electrons, is given by

F = Nµ− kBT
∑
i

ln
[
1 + e−(εi−µ)/kBT

]
. (8)

In our case, we can write this as

F = Nµ− kBT V
∞∑
n=0

∫ +∞

~ωc(n+1/2)

dερn(ε) ln
[
1 + e−(ε−µ)/kBT

]
(9)

= Nµ− V (2m∗)3/2ωc
2π2~2

∞∑
n=0

∫ +∞

~ωc(n+1/2)

dε

√
ε− ~ωc(n+ 1/2)

1 + e(ε−µ)/kBT
, (10)

where we have used Eq. (6) and integrated by parts in the second step. In the limit
T → 0+, the Fermi function just cuts the integral and the chemical potential µ → εF .
Thus, in the limit T → 0+, we find

F = NεF − V
(2m∗)3/2ωc

2π2~2
n0∑
n=0

∫ εF

~ωc(n+1/2)

dε
√
ε− ~ωc(n+ 1/2) (11)

= NεF − V
(2m∗)3/2ωc

3π2~2
n0∑
n=0

(
εF − ~ωc(n+ 1/2)

)3/2
(12)

= NεF − V
(2~ωcm∗)3/2ωc

3π2~2
n0∑
n=0

(
x− n− 1/2)

)3/2
. (13)

For the last step we introduced x = εF/~ωc; n0 is defined by the condition n0 + 1/2 ≤
x < n0 + 3/2. For small magnetic fields, x becomes very large and small changes in the
magnetic field result in large changes in x. We can thus virtually tune the magnetic field
in a way such that n0 + 1 = x.
For large n0 we can use the Euler-Maclaurin formula from the exercise sheet to perform
the approximative summation in Eq. (13)

n0∑
n=0

(
x− n− 1/2)

)3/2 ≈ (
−2

5
(n0 + 1/2− n)5/2 +

1

16
(n0 + 1/2− n)1/2

)∣∣∣∣n0+1/2

−1/2
(14)

≈ 2

5
x5/2 − 1

16
x1/2 . (15)

It is obvious now that F would not depend on the magnetic field if we had just replaced
the sum by an integral. To find a finite diamagnetic effect, it is important to take into
account the correction between the Riemann sum and the integral. The diamagnetism
arises thus from the discrete nature of the Landau levels.
The free energy thus yields

F = NεF − V
2(2m∗)3/2ε

5/2
F

15π2~3
+ V

(2m∗)3/2ω2
cε

1/2
F

48π2~
. (16)

Eventually, we find for the magnetization (for B → 0)

M = − 1

V

∂F

∂B
=

(2m∗)3/2e2ε
1/2
F

24π2~m∗2c2
B = −1

3

( m
m∗

)2
µ2
Bρ(εF )B, (17)
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where we set µB = e~/2mc. This leads to the susceptibility

χL =
∂M

∂B

∣∣∣∣
B=0

= −1

3

( m
m∗

)2
χP , (18)

the Landau diamagnetism is thus a factor 3 weaker than the Pauli paramagnetism.
Note: There are also diamagnetic metals. This has to do with the appearance of the
effective mass m∗ from the band structure in (18).

Exercise 8.3 Landau Levels in Graphene

We assume we have a magnetic field B = (0, 0, B) in z-direction and use the Landau
gauge A = (0, Bx, 0).

a) With the Peierls substitution (p→ p− eA/c) the (relevant) Hamiltonian reads

H = vF

[
pxσx +

(
py −

eBx

c

)
σy

]
. (19)

We want to solve HΨ = EΨ, where Ψ is a two-component spinor. Instead, we solve
the “square” of the Schrödinger equation,1 H2Ψ = E2Ψ:

H2 = v2F

[
pxσx +

(
py −

eBx

c

)
σy

] [
pxσx +

(
py −

eBx

c

)
σy

]
Ψ

= v2F

[
p2x12 +

(
py −

eBx

c

)2

12 −
~eB
c
σz

]
Ψ = E2Ψ, (20)

where we have used {σi, σj} = 2δij12 and [x, px] = i~.

As the problem is translationally invariant in the y-axis, we make the Ansatz
Ψ(x, y) = eikyyφ(x), with φ(x) a 2-component spinor. Then,[

p2x +
e2B2

c2

(
c~ky
eB
− x
)2
]
12 φ(x) =

(
E2

v2F
12 +

~eB
c
σz

)
φ(x). (21)

This is the equation(s) of a shifted harmonic oscillator(s),2 thus we may write the
solution(s) of the ”squared” Schrödinger equation H2Ψ = E2Ψ easily

Ψ E2/v2F

eikyyϕn(x− x0)
(
1
0

)
2~|eB|
c

(n+ 1/2)− ~eB
c

eikyyϕn(x− x0)
(
0
1

) 2~|eB|
c

(n+ 1/2) + ~eB
c

where ϕn(x − x0) are the harmonic oscillator eigenfunctions shifted by x0 = c~ky
eB

.
Without loss of generality, let’s us now assume eB > 0. Then we have for E0 = 0

eigenstates eikyyϕn=0(x − x0)
(
1
0

)
. The subspace corresponding to E1 = ±vF

√
2~eB
c

is spanned over vectors eikyyϕn=1(x − x0)
(
1
0

)
and eikyyϕn=0(x − x0)

(
0
1

)
. In order to

get the eigenstates of H one should perform diagonalization of H in the subspace;

1Note that an eigenstate Ψ of H is an eigenstate of H2, but the it does not hold the other way round.
In generall, eigenvectors of H2 with eigenvalue E2 do span the eigensubspaces of H corresponding to ±E.

2And multiplyied by 2m.
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we need just the eigenvalues and for that we claim,3 that for each ky there will be
1 solution with positive and 1 with negative energy E, therefore

Em = sign(m)vF

√
2~|eB|
c
|m| , m = 0,±1, . . . (27)

b) The degeneracy of the eigenvalues (27) is found in the usual way. From Eq. (21)
we see, that the center of the wave function is shifted to c~ky

eB
. In a sample of size

L× L, we thus have the condition that c~ky
|eB| < L, with ky = 2πny/L. Hence,

NB =
|eB|
2π~c

L2 (28)

and is independent of n but dependent on B. Since we have only considered half of
the Hamiltonian (only K-part), we have to multiply this by 2. Thus, the energies
given in Eg. (27) are 2NB-times degenerate. Special care has to be given to the
(n = 0)-case. There, NB states come from one half (K-part) of the Hamiltonian,
thus the degeneracy is also 2NB.

c) Usually, the magnetization of a system oscillates with changing the magnetic field,
since additional Landau levels are pushed through the chemical potential. In graphene,
µ = 0 and the Landau levels are pushed away from µ, but never cross it. Hence the
magnetization does not oscillate (this changes for doped grahene).

Let us try to figure out which kind of magnetic response there will be if we apply a
magnetic field to graphene. Due to the electronic spins, one expects a paramagnetic
response from every partially filled band in general, the so-called Pauli paramag-
netism which, at least to lowest order in the magnetic field (linear response), is
proportional to the density of states at the Fermi energy. For graphene, the density
of states at the Fermi energy vanishes and thus the paramagnetic response due to
the electronic spin is zero.

3Proof: (assumed eB > 0) let us denote

|I〉 = eikyy

(
1

0

)
|n+ 1〉 , |II〉 = eikyy

(
0

1

)
|n〉 , (22)

where |n〉 does stand for commonly normalized eigenvector for a harmonic oscillator in x-direction shifted
by x0, thus

x̂− x0 =

√
c~

2eB
(â† + â) , p̂x = i

√
~eB
2c

(â† − â) , (23)

where â and â† are the ladder operators,

â|n〉 =
√
n|n− 1〉 , â†|n〉 =

√
n+ 1|n+ 1〉 . (24)

Then we may rewrite the Hamiltonian H using these operators as

H = vF

[
i

√
~eB
2c

(â† − â)σx +

(
−i~∂y −

eB

c

(
x0 +

√
c~

2eB
(â† + â)

))
σy

]
. (25)

Further, after an easy calculation, we may find that

H|I〉 = −ivF

√
2~eB
c

(n+ 1)|II〉 , H|II〉 = ivF

√
2~eB
c

(n+ 1)|I〉 , (26)

which means that the Hamiltonian H is in the corresponding subspace in the basis |I〉, |II〉 given by the

matrix −vF
√

2~eB
c (n+ 1)σy and thus the spectrum is ±vF

√
2~eB

c (n+ 1).
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The magnetic response of a system is defined as the change of the free energy with
respect to a change in the magnetic field

M = −∂ F(B)

∂B
χ =

∂ M(H)

∂H

∣∣∣∣
B=0

= −∂
2 F(H)

∂B2

∣∣∣∣
B=0

(29)

In many cases, it is sufficient to expand the free energy to second order in the
magnetic field F ∼ O(B2), which directly gives a magnetization linear in B and
a susceptibility which is constant. This is known as linear response theory and
requires F to be analytic for B → 0.

In two dimensions, it is not obvious that this requirement is satisfied, since the
spectrum abruptly changes from a continuous spectrum at B = 0 to a discrete
spectrum for every B 6= 0. Therefore one needs to be careful before applying linear
response theory. But, since the Eq. (29) holds in general, one can compute F
exactly and obtain the magnetization and the susceptibility, which then might have
a non-trivial structure suggesting the importance of non-linear response.

Instead of going into the quantitative analysis, let us discuss the nature of the
response (para- or diamagnetic) by qualitative reasoning. We will for simplicity
assume zero temperature, work in the grand canonical ensemble and fix the chemical
potential to the band crossing point. To find the magnetization, we would need the
free energy as a function of the magnetic field, but for that purpose we may also
examine the quantity ∆F(B) = F(B)−F0 where F0 = F(B = 0).

We know that the density of states per spin in graphene at zero field is linear,

ρ(E) =
L2

π

∣∣∣∣k dk

dE

∣∣∣∣ =
L2

π

|E|
(~vF )2

, (30)

and we know the degeneracy of each Landau level is 2NB = 2L2|eB|/(2π~c) at
positions Em = sign(m)vF

√
2~|meB|/c as found in the first part of this exercise.

As a consequence, there are exactly as much states in between the position of two
Landau levels as the degeneracy of one Landau level. At zero temperature, the 0th

Landau level will be exactly half filled4 and hence all the states from zero energy
to −E1/

√
2 will be lifted to the energy E0. For the m-th Landau level (m < 0),

states from energy range −
√
|m|E1 to −

√
|m| − 1/2E1 will be pushed down and

the states from −
√
|m|+ 1/2E1 to −

√
|m|E1 will be pushed up; look at Fig. (1)

The energy changes corresponding to the levels are thus

∆E0 = 2NBE1

[
2

3

(
1

2

)3/2
]
,

∆E−1 = 2NBE1

[
−
√

1 +
2

3

(
3

2

)3/2

− 2

3

(
1

2

)3/2
]
,

... =
...

∆E−m = 2NBE1

[
−
√
m+

2

3
(m+ 1/2)3/2 − 2

3
(m− 1/2)3/2

]
, (m > 0)

⇒ ∆E ≡
∞∑
m=0

E−m = 2NBE1 lim
M→∞

(
2

3
(M + 1/2)3/2 −

M∑
m=1

√
m

)
≈ 0.416NBE1 ,

4This can be understood as the T → 0 limit of the finite temperature occupation numbers.
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where the last limit including the summation might be performed either using the
approximative Euler–MacLaurin formula from the exercise sheet (which does give
a numerical prefactor 7

12
√
2
≈ 0.412) or analytically by use of special functions. At

T = 0 we have F = Etotal. For the magnetization we get

∆F = ∆E ∝ |B|3/2 , ∆F > 0 ⇒ M = −∂ ∆F
∂B

= −c sign(B)|B|1/2 ,
(31)

with a positive constant c. From this we immediately conclude that the magnetiza-
tion is finite and has the oposite sign as B; thus the response is diamagnetic.
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Figure 1: To the c) part: the change of the total energy at T = 0 might be easily calculated
looking at figure above.
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